Elasticity and symmetry of triangular lattice materials

Abstract : The elastic tensor of any triangular (2D) lattice material is given with re- spect to the geometry and the mechanical properties of the links between the nodes. The links can bear central forces (tensional material, for example with hinged joints), momentums (flexural materials) or a combination of the two. The symmetry class of the stiffness tensor is detailed in any case by using the invariants of Forte and Vianello. A distinction is made between the trivial cases where the elasticity symmetry group corresponds to the mi- crostructure’s symmetry group and the non-trivial cases in the opposite case. Interesting examples of isotropic auxetic materials (with negative Poisson’s ratio) and non-trivial materials with isotropic elasticity but anisotropic frac- turation (weak direction) are shown. The proposed set of equations can be used in a engineering process to create a 2D triangular lattice material of the desired elasticity.
Type de document :
Article dans une revue
International Journal of Solids and Structures, Elsevier, 2017, 〈10.1016/j.ijsolstr.2017.09.019〉
Liste complète des métadonnées

Littérature citée [23 références]  Voir  Masquer  Télécharger

Contributeur : Marc Louis Maurice François <>
Soumis le : jeudi 12 octobre 2017 - 09:30:09
Dernière modification le : mardi 28 août 2018 - 10:44:02


Fichiers produits par l'(les) auteur(s)




Marc Louis Maurice François, L. Chen, Michel Coret. Elasticity and symmetry of triangular lattice materials. International Journal of Solids and Structures, Elsevier, 2017, 〈10.1016/j.ijsolstr.2017.09.019〉. 〈hal-01614317〉



Consultations de la notice


Téléchargements de fichiers