A thermodynamically consistent model of a liquid-vapor fluid with a gas

Abstract : This work is devoted to the consistent modeling of a three-phase mixture of a gas, a liquid and its vapor. Since the gas and the vapor are mis-cible, the mixture is subjected to a non-symmetric constraint on the volume. Adopting the Gibbs formalism, the study of the extensive equilibrium entropy of the system allows to recover the Dalton's law between the two gaseous phases. In addition, we distinguish whether phase transition occurs or not between the liquid and its vapor. The thermodynamical equilibria are described both in extensive and intensive variables. In the latter case, we focus on the geometrical properties of equilibrium entropy. The consistent characterization of the thermodynamics of the three-phase mixture is used to introduce two Homogeneous Equilibrium Models (HEM) depending on mass transfer is taking into account or not. Hyperbolicity is investigated while analyzing the entropy structure of the systems. Finally we propose two Homogeneous Relaxation Models (HRM) for the three-phase mixtures with and without phase transition. Supplementary equations on mass, volume and energy fractions are considered with appropriate source terms which model the relaxation towards the thermodynamical equilibrium, in agreement with entropy growth criterion.
Type de document :
Pré-publication, Document de travail
Liste complète des métadonnées

Littérature citée [33 références]  Voir  Masquer  Télécharger

Contributeur : Hélène Mathis <>
Soumis le : jeudi 12 octobre 2017 - 15:57:20
Dernière modification le : jeudi 21 juin 2018 - 17:14:03


Fichiers produits par l'(les) auteur(s)


  • HAL Id : hal-01615591, version 1
  • ARXIV : 1710.04525


Hélène Mathis. A thermodynamically consistent model of a liquid-vapor fluid with a gas. 2017. 〈hal-01615591v1〉



Consultations de la notice


Téléchargements de fichiers