D. Manolakis and G. Shaw, Detection algorithms for hyperspectral imaging applications, IEEE Signal Processing Magazine, vol.19, issue.1, pp.29-43, 2002.
DOI : 10.1109/79.974724

M. Govender, K. Chetty, and H. Bulcock, A review of hyperspectral remote sensing and its application in vegetation and water resource studies, Water SA, vol.33, issue.2, 2007.
DOI : 10.4314/wsa.v33i2.49049

C. Gomez, R. A. Rossel, and A. B. Mcbratney, Soil organic carbon prediction by hyperspectral remote sensing and field vis-NIR spectroscopy: An Australian case study, Geoderma, vol.146, issue.3-4, pp.403-411, 2008.
DOI : 10.1016/j.geoderma.2008.06.011

E. K. Hege, D. O-'connell, W. Johnson, S. Basty, and E. L. Dereniak, Hyperspectral imaging for astronomy and space surviellance, Imaging Spectrometry IX, pp.380-391, 2004.
DOI : 10.1117/12.506426

D. Manolakis, D. Marden, and G. A. Shaw, Hyperspectral image processing for automatic target detection applications, pp.79-116, 2003.

. Aalders, Hyperspectral imaging for non-contact analysis of forensics traces, Forensic science international, vol.223, issue.1, pp.28-39, 2012.

M. E. Martin, Development of an Advanced Hyperspectral Imaging (HSI) System with Applications for Cancer Detection, Annals of Biomedical Engineering, vol.73, issue.3, pp.1061-1068
DOI : 10.1201/9780203008997

H. Fabelo, HELICoiD project: a new use of hyperspectral imaging for brain cancer detection in real-time during neurosurgical operations Hyperspectral Imaging Sensors: Innovative Applications and Sensor Standards 2016, Proc. SPIE 986002, 2016.

G. Lu and B. Fei, Medical hyperspectral imaging: a review Intra-operative MRI facilitates tumour resection during trans-sphenoidal surgery for pituitary adenomas, Journal of Biomedical Optics Acta neurochirurgica, vol.19, issue.153 7, pp.1367-1373, 2011.

C. Rodarmel and J. Shan, Pincipal component analysis for hyperspectral image classification, Surveying and Land Information Science, p.115, 2002.

M. Castro, F. Dupros, E. Francesquini, J. F. Méhautk, and P. O. Navaux, Energy Efficient Seismic Wave Propagation Simulation on a Low-Power Manycore Processor, 2014 IEEE 26th International Symposium on Computer Architecture and High Performance Computing, p.8, 2014.
DOI : 10.1109/SBAC-PAD.2014.28

URL : https://hal.archives-ouvertes.fr/hal-01060286

E. Francesquini, On the energy efficiency and performance of irregular application executions on multicore, NUMA and manycore platforms, Journal of Parallel and Distributed Computing, vol.76, pp.32-48, 2015.
DOI : 10.1016/j.jpdc.2014.11.002

URL : https://hal.archives-ouvertes.fr/hal-01092325

B. D. De-dinechi, A clustered manycore processor architecture for embedded and accelerated applications, 2013 IEEE High Performance Extreme Computing Conference (HPEC), pp.1-6, 2010.
DOI : 10.1109/HPEC.2013.6670342

R. Lazcano, Parallelism Exploitation of a Dimensionality Reduction Algorithm Applied to Hyperspectral Images " Design and Architectures for Signal and Image Processing, 2016 Conference on, 2016.

J. M. Bioucas-dias, Hyperspectral Remote Sensing Data Analysis and Future Challenges, IEEE Geoscience and Remote Sensing Magazine, vol.1, issue.2, pp.6-36, 2013.
DOI : 10.1109/MGRS.2013.2244672

M. Panju, Iterative methods for computing eigenvalues and eigenvectors, Waterloo Mathematics Review, pp.9-18, 2011.

A. Quarteroni, R. Sacco, and F. Saleri, Numerical mathematics, pp.183-238, 2007.

G. E. Forsythe and P. Henrici, The cyclic Jacobi method for computing the principal values of a complex matrix, Transactions of the American Mathematical Society, vol.94, issue.1, pp.1-23, 1960.
DOI : 10.1090/S0002-9947-1960-0109825-2

C. González, S. López, D. Mozos, and R. Sarmiento, FPGA Implementation of the HySime Algorithm for the Determination of the Number of Endmembers in Hyperspectral Data, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol.8, issue.6, pp.2870-2883, 2015.
DOI : 10.1109/JSTARS.2015.2425731

S. Kabwama, Intra-operative Hyperspectral Imaging for Brain Tumour Detection and Delineation, XXXI Design of Circuits and Integrated Systems Conference (DCIS), 2016.

R. Salvador, Demonstrator of the HELICoiD tool to detect in real time brain cancer, Design and Architectures for Signal and Image Processing (DASIP), 2016 Conference on, pp.1-2, 2016.

H. Fabelo, A Novel Use of Hyperspectral Images for Human Brain Cancer Detection using in-Vivo Samples, Proceedings of the 9th International Joint Conference on Biomedical Engineering Systems and Technologies, pp.311-320, 2016.
DOI : 10.5220/0005849803110320

K. Huang, S. Li, X. Kang, and L. Fang, Spectral???Spatial Hyperspectral Image Classification Based on KNN, Sensing and Imaging, vol.51, issue.2, pp.1-13, 2016.
DOI : 10.1109/TGRS.2012.2205263

D. Fernandez, C. Gonzalez, D. Mozos, and S. Lopez, FPGA implementation of the principal component analysis algorithm for dimensionality reduction of hyperspectral images, Journal of Real-Time Image Processing, vol.39, issue.6, pp.1-12, 2016.
DOI : 10.1109/36.934079

R. Lazcano, Parallelism exploitation of a PCA algorithm for hyperspectral images using RVC-CAL, SPIE Remote Sensing, International Society for Optics and Photonics, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01484535

J. Eker and J. W. Janneck, Cal language report, 2003.

K. K. Matam, Evaluating energy efficiency of floating point matrix multiplication on FPGAs, 2013 IEEE High Performance Extreme Computing Conference (HPEC), pp.1-6, 2013.
DOI : 10.1109/HPEC.2013.6670345