. .. Method,

. .. Model,

, Experimental test for radial thermal conductivity

. .. References,

. .. Mesoscale/macroscale, 64 2.2 Representative elementary volume (REV) and scale separation

. .. Theoretical-models,

, 67 3.2 Basic Concept of Homogenization and asymptotic expansions

. .. , Effective Thermal conductivity estimation for imposed boundary conditions, p.71

, Development of Framework for Effective conductivity tensor calculation

. .. Geometrical-modeling,

, 76 5.2 Representative elementary volume of uniform square cell

, REV and homogenization in tapes

. .. References, , vol.87

J. Fish and Q. Yu, Multiscale Damage Modeling for Composite Materials : Theory and Computational Framework 2 . 0 Mathematical Homogenization for Damaged Composites Int, J. Numer. Methods Eng, vol.52, pp.161-91, 2001.

F. Gruer, Multiscale numerical modelling of microstructured reinforced composites, 2015.

L. Yang, Z. Wu, D. Gao, and X. Liu, Microscopic damage mechanisms of fibre reinforced composite laminates subjected to low velocity impact, Comput. Mater. Sci, vol.111, pp.148-56, 2016.

L. Mishnaevsky and S. Schmauder, Continuum Mesomechanical Finite Element Modeling in Materials Development: A State-of-the-Art Review Appl, Mech. Rev, vol.54, p.49, 2009.

M. Selvakumar, T. Ramkumar, and P. Chandrasekar, Thermal characterization of titanium--titanium boride composites, J. Therm. Anal. Calorim, vol.136, pp.419-443, 2019.

G. Boussatour, P. Cresson, B. Genestie, N. Joly, J. Brun et al., Measurement of the thermal conductivity of flexible biosourced polymers using the 3-omega method, Polym. Test, vol.70, pp.503-513, 2018.

R. Wang, H. Zobeiri, H. Lin, W. Qu, X. Bai et al., Anisotropic thermal conductivities and structure in lignin-based microscale carbon fibers, Carbon N. Y, vol.147, pp.58-69, 2019.

J. Liu, W. Qu, Y. Xie, B. Zhu, T. Wang et al., Thermal conductivity and annealing effect on structure of lignin-based microscale carbon fibers, Carbon N. Y, vol.121, pp.35-47, 2017.

M. Srinivasan, P. Maettig, K. Glitza, B. Sanny, A. Schumacher et al., Out of Plane Thermal Conductivity of Carbon Fiber Reinforced Composite Filled with Diamond Powder Open, J. Compos. Mater, vol.06, pp.41-57, 2016.

F. Gori and S. Corasaniti, Effective thermal conductivity of composites Int. J. Heat Mass Transf, vol.77, pp.653-61, 2014.

J. Goyhénèche and A. Cosculluela, A multiscale model for the effective thermal conductivity tensor of a stratified composite material, Int. J. Thermophys, vol.26, pp.191-202, 2005.

V. Plana, Caractérisation par méthode inverse et modélisation des propriétés thermophysiques orthotropes des matériaux composites (L'ecole national superieure de l, 2003.

Q. Li, Homogenization for composite material properties using smoothed finite element method 1-40, 2006.

M. Thomas, Propriétés thermiques de matériaux composites : caractérisation expérimentale et approche microstructurale Ec. Polytech. l'Université Nantes, p.253, 2008.

H. Moussaddy, A New Definition of the Representative Volument Element in Numerical Homogenization Problems and its Application to the Performance Evaluation of Analytical Homogenization Models, 2013.

R. Hill, Elastic properties of reinforced solids: Some theoretical principles, J. Mech. Phys. Solids, vol.11, pp.357-72, 1963.

W. Drugan and J. Willis, A micromechanics-based nonlocal constitutive equation and estimates of representative volume element size for elastic composites, J. Mech. Phys. Solids, vol.44, pp.497-524, 1996.

A. Gusev, Representative volume element size for elastic composites: A numerical study, J. Mech. Phys. Solids, vol.45, pp.1449-59, 1997.

M. Jiang, J. I. Ostoja-starzewski, and M. , Apparent thermal conductivity of 1. Introduction, 2002.

E. .. Setup,

, Micro-scale numerical modelling on the tapes

, 106 6.2 Averaging technique for temperature measurement by numerical model, vol.107

. .. Modeling,

. .. , 113 7.4 Influence of rear face contact on temperature measurement on the tops surface, Temperature variation of the top surface with time

. .. References,

J. Frketic, T. Dickens, and S. Ramakrishnan, Automated manufacturing and processing of fiber-reinforced polymer (FRP) composites: An additive review of contemporary and modern techniques for advanced materials manufacturing, Addit. Manuf, vol.14, pp.69-86, 2017.

M. Skinner, Trends, advances and innovations in filament winding Reinf. Plast, vol.50, pp.28-33, 2006.

A. Beakou, M. Cano, L. Cam, and V. V. , Modelling slit tape buckling during automated prepreg manufacturing: A local approach, Compos. Struct, vol.93, pp.2628-2663, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01131580

L. Louët, V. Rousseau, B. , L. Corre, S. Boyard et al., Directional spectral reflectivity measurements of a carbon fibre reinforced composite up to 450 °C, Int. J. Heat Mass Transf, vol.112, pp.882-90, 2017.

F. Raspall, R. Velu, and N. Vaheed, Fabrication of complex 3D composites by fusing automated fiber placement (AFP) and additive manufacturing (AM) technologies Adv. Manuf, Polym. Compos. Sci, vol.5, pp.6-16, 2019.

Z. August, G. Ostrander, J. Michasiow, and D. Hauber, Recent developments in automated fiber placement of thermoplastic composites, Autom. Dyn, vol.50, pp.30-37, 2014.

R. Schledjewski, Thermplastic Tape Placement by Means of Diode Laser Heating International Sampe Symposium and Exhibition, Society for the Advancement of Material and Process Engineering, p.222, 2009.

C. Stokes-griffin, T. Matuszyk, C. , P. , and C. , Modelling the Automated Tape Placement of Thermoplastic Composites with, Situ Consolidation, 2012.

M. Lamontia, M. Gruber, S. Funck, B. Waibel, R. Cope et al., Situ Tape Laying and Fiber Placement Nasa, pp.1-15, 2003.

A. Leon, M. Perez, A. Barasinski, E. Abisset-chavanne, D. B. Chinesta et al., , 2019.

, Multi-Scale Modeling and Simulation of Thermoplastic Automated Tape Placement: Effects of Metallic Particles Reinforcement on Part Consolidation Nanomaterials, vol.9, p.695

C. Stokes-griffin and P. Compston, A combined optical-thermal model for nearinfrared laser heating of thermoplastic composites in an automated tape placement process, Compos. Part A Appl. Sci. Manuf, vol.75, pp.104-119, 2015.

S. Grove, Thermal modelling of tape laying with continuous carbon fibrereinforced thermoplastic Composites, vol.19, pp.367-75, 1988.

. Louët-v-le, S. Corre, N. Boyard, D. Delaunay, and X. Tardif, Development of an Experimental Bench for Analysing Heat Transfer During the Tape Placement of Carbon / Peek Composites Iccm, vol.21, pp.20-25, 2017.

M. Szcesny, F. Heieck, S. Carosella, P. Middendorf, H. Sehrschön et al., The advanced ply placement process-an innovative direct 3D placement technology for plies and tapes Adv, Manuf. Polym. Compos. Sci, vol.3, pp.2-9, 2017.

K. Madhok, Comparative Characterization of Out-of-Autoclave Materials Made Chapter 4: Thermal behavior of tapes in automated tape placement at the scale of fibers 119, 2013.

, By Automated Fiber Placement and Hand-Lay-Up Processes

A. Da-costa, E. Botelho, M. Costa, N. Narita, and J. Tarpani, A review of welding technologies for thermoplastic composites in aerospace applications, J. Aerosp. Technol. Manag, vol.4, pp.255-65, 2012.

. Kok, On the consolidation quality in laser assisted fiber placement: the role of the heating phase, 2018.

M. Yakout and M. Elbestawi, Additive Manufacturing of Composite Materials: An Overview Optimization of drilling process View project Additive Manufacturing Fabrication of Lightweight Composites View project, 2017.

L. Violaine, Etude du comportement thermique de bandes composites preimpregnees au cours du procede de fabrication AFP avec chauffage laser, 2018.

Z. Zhou, , 2019.

S. Lee and G. Springer, Filament Winding Cylinders: III. Selection of the Process Variables, J. Compos. Mater, pp.1344-66, 1990.

W. Il and G. Springer, A Model of the Manufacturing Process of Thermoplastic Matrix Composites, J. Compos. Mater, vol.21, pp.1017-55, 1987.

S. Mantell, Manufacturing Process Models for Thermoplastic Composites, J. Compos. Mater, vol.26, pp.2348-77, 1992.

H. Sarrazin-g-s-s, Thermochemical and Mechanical Aspects of Composite Tape Laying, J. Compos. Mater, vol.29, pp.1908-1943, 1995.

R. Pitchumani, S. Ranganathan, R. Don, J. Gillespie, and M. Lamontia, Analysis of transport phenomena governing interfacial bonding and void dynamics during thermoplastic tow-placement, Int. J. Heat Mass Transf, vol.39, pp.1883-97, 1996.

F. Sonmez and M. Akbulut, Process optimization of tape placement for thermoplastic composites Compos, Part A Appl. Sci. Manuf, vol.38, pp.2013-2036, 2007.

F. Lemarchand, P. Beauchêne, L. B. Chinesta, and F. , A Multi-scale Method to Predict Residual Stress Appearance in the Process of on-line Consolidation of Thermoplastic Composites Int, J. Form. Process, vol.10, pp.471-98, 2007.

T. J. Gillespie and J. , Modeling of Heat Transfer and Void Dynamics for the Thermoplastic Composite Tow-Placement Process, J. Compos. Mater, vol.37, pp.1745-68, 2003.

F. Sonmez and H. Hahn, Modeling of heat transfer and crystallization in thermoplastic composite tape placement process, J. Thermoplast. Compos. Mater, vol.10, pp.198-240, 1997.

C. Stokes-griffin and P. Compston, An inverse model for optimisation of laser heat flux distributions in an automated laser tape placement process for carbon-fibre/PEEK Compos, Part A Appl. Sci. Manuf, vol.88, pp.190-197, 2016.

A. Kollmannsberger, R. Lichtinger, F. Hohenester, and E. C. Drechsler, Numerical analysis of the temperature profile during the laser-assisted automated fiber placement of CFRP tapes with thermoplastic matrix, J. Thermoplast. Compos. Mater, vol.31, pp.1563-86, 2018.

P. Hart and P. Hart, How the Hough Transform Was Invented Editor ' s introduction IEEE Signal Process. Mag, pp.18-22, 2009.

E. Davies, A modified Hough scheme for general circle location, Pattern Recognit. Lett, vol.7, pp.37-43, 1988.

E. Davies, Finding ellipses using the generalised Hough transform, Pattern Recognit. Lett, vol.9, pp.87-96, 1989.

M. Thomas, Propriétés thermiques de matériaux composites : caractérisation expérimentale et approche microstructurale Ec. Polytech. l'Université Nantes, p.253, 2008.

Y. Cengel and M. Boles, Appendix 1 -Property tables and charts (SI units) Heat Transf. A Prat, p.992, 2014.

J. Liang, Experimental measurement and modeling of thermal conductivities of carbon fibers and their composites modified with carbon nanofibers, 2014.